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Abstract

We propose a simple adaptive learning model to study behavior in the call market. The laboratory environment
features buyers and sellers who receive a new random value or cost in each period, so they must learn a strategy
that maps these random draws into bids or asks. We focus on buyers’ adjustment of the “mark-down” ratio of bids
relative to private value and sellers’ adjustment of the corresponding “mark-up” ratio of asks relative to private
cost. The learning model involves partial adjustment of these ratios towards the ex post optimum each period. The
model explains a substantial proportion of the variation in traders’ strategies. Parameter estimates indicate strong
recency effects and negligible autonomous trend, but strongly asymmetric response to different kinds of ex post
error. The asymmetry is only slightly attenuated in “observational learning” from other traders’ ex post errors.
Simulations show that the model can account for the main systematic deviations from equilibrium predictions
observed in this market institution and environment.
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1. Introduction

Market institutions are the heart of modern economies. They bring together numerous self-
interested, privately informed people, and somehow produce mutually beneficial trades.
A wide variety of market institutions, ranging from the continuous double auction to bro-
kered search, operate in a wide variety of environments. Economists would like to know
which market institutions perform best in particular environments. More fundamentally,
economists need to understand more precisely how market institutions work.

The standard theoretical approach, called mechanism design, studies the equilibrium
properties of institutions. But for a market institution to work well in practice it is not
sufficient (and perhaps not even necessary)' that its equilibria are efficient. It is at least
as important that the institution promotes rapid learning of behavior that supports efficient
market outcomes. Unfortunately there is as yet no standard theory of how institutions
(market or nonmarket) mediate learning. Our goal is to produce empirical tools and evidence
that will guide the construction of such a theory.
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78 CASON AND FRIEDMAN

We pursue our goal by fitting a simple error-driven learning model to behavior observed
in the simplest viable market institution, the call market, also known as the Clearinghouse
or the two-sided sealed auction. The call market institution collects buyers’ and sellers’
offers (bids and asks, respectively) while the market is open, and then clears the offers at
a uniform price when the market closes. The call market is used extensively on organized
exchanges for securities with insufficient trading volume to support continuous trading, and
it is used on the NYSE and ¢lsewhere to set daily opening prices.

Our laboratory study features a random values environment. Unlike the vast majority
of market experiments that use stationary repetition, we induce value and cost parameters
for buyers and sellers that are drawn independently each trading period from announced
(uniform) distributions.” Contingent on his or her own value, each trader must choose an
action (e.g., a bid) each period and these actions jointly determine the outcome. Thus each
period we have a new episode of price formation based on new private information, and
we can observe how traders adjust their contingent actions in response to accumulated
experience.

Learning models try to capture the adjustment process and predict the extent to which
traders’ contingent actions and beliefs eventually reach equilibrium. Several strands of lite-
rature, old and new, inform the learning model we develop here. Psychologists following
Bush and Mosteller (1955) model subjects’ adjustment to experience in simple individual
choice tasks. We will be especially interested in the “error-driven” learning processes fol-
lowing Rescorla and Wagner (1972) that deal with complex contingent feedback, and with
the recent machine learning models following e.g., McClelland and Rumelhart (1988). The
mushrooming literature on learning in games, as summarized in recent texts by Fudenberg
and Levine (1998) and Camerer (1999), would also seem relevant. Unfortunately that litera-
ture focuses mainly on choices among a few discrete action alternatives rather than among
the continuous families of contingent pricing strategies faced by market participants.’ We
draw insights from the learning in games literature, but draw elements of our learning model
mainly from the psychology and computer science literature.

Our work is also informed by earlier laboratory studies. Kagel (1994) and Cason and
Friedman (1997) test the equilibrium theory of the call market summarized in Satterthwaite
and Williams (1993). They find that the theory is superior to simple alternatives in predicting
the general level of prices and efficiency, but does a poor job of predicting individual bid
and ask functions. Traders in the laboratory tend to reveal value and cost more fully than
the equilibrium theory predicts. Based on some ad hoc regressions, Cason and Friedman
(1997) conjecture that the anomalous behavior arises from a biased learning process. The
structural learning model presented below uses the same data and confirms the conjecture.

Daniel et al. (1998) report laboratory tests of equilibrium theory in the extreme case
of a call market with only one buyer and one seller, i.e., bilateral monopoly. Using very
asymmetric distributions for buyer values and seller costs, they find that sellers are less
aggressive and buyers more aggressive than the equilibrium benchmarks. They show that a
learning model can account for many of the regularities. Their learning model was developed
independently from ours and differs in many ways, but also models the adjustment of an
aggressiveness parameter in response to different sorts of experience.
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Friedman and Ostroy (1995) investigate the call market and related trading institutions in
a stationary environment with divisible goods. They argue that the data are best explained
by an unmodelled learning process that eventually induces traders to offer at the competi-
tive equilibrium price (a form of price underrevelation) but to fully reveal quantity. They
demonstrate that such strategies are Nash equilibria that support competitive equilibrium
outcomes. Cason (1993) presents a simple adaptive learning algorithm for the call market
in a stationary environment that is based on Gode and Sunder’s (1993) Zero Intelligence
(ZI) algorithm. Simulations of the algorithm produce data that closely resembles laboratory
markets populated with human subjects. Selten and Buchta (1998) introduce an informal
“learning direction theory” that explains changes in bid functions in the first-price private-
values auction, a trading institution with incentives similar to the call market. Garvin and
Kagel (1994) find that subjects learn to avoid overbidding in first-price common-values
auctions from their personal experience of the “winner’s curse” and also from observing
the fate of other players who overbid.

The remainder of this paper is organized as follows. Section 2 summarizes the rules
of the call market institution, traders’ equilibrium strategies, and the experiment design.
Section 3 presents the learning model, which involves the adjustment of a single variable for
each buyer (and each seller) indicating the degree to which bids reveal true value (and asks
reveal true cost). Section 4 collects the results. The learning model, though parsimonious,
explains a substantial proportion of the variation in traders’ strategies. Parameter estimates
suggest little or no autonomous time trend, and confirm that traders respond asymmetrically
to the qualitatively different forms ex post error. The parameter estimates also indicate
strong recency effects, as in Cournot belief learning, as opposed to fictitious play or simple
Bayesian learning. Like Garvin and Kagel (1994), we find significant evidence that traders
learn from other traders’ ex post errors as well as from their own errors. A simulation of the
estimated model confirms that it reproduces the main departures from equilibrium behavior.
Section 5 summarizes the results and offers some concluding remarks.

2. The call market institution, equilibrium theory and experimental design
2.1.  Institution pricing rules and equilibrium

The call market trading institution solicits a bid (or highest acceptable purchase price for a
single unit) b; from each buyer i and an ask (or lowest acceptable sale price) a; from each
seller j. The demand revealed in {b;} and the supply revealed in {a;} then are cleared at a
uniform equilibrium price p*. With indivisible units, there often is an interval [p;, p,] of
market clearing prices, in which case the chosen priceis (1 —k) p; +kp, wherek € [0, 1]isa
specified parameter. With n buyers and n sellers, it turns out that p; and p,, are respectively
the nth and (n + 1)th lowest offers, counting both bids and asks. The experiment uses n =4,
so the price-setting offers are the fourth and fifth lowest, denoted 54 and ss.

Figure 1 illustrates the pricing rules for a specific draw of values and costs, shown with
solid lines. Traders reveal demand and supply through their bids and asks, shown with
dotted lines. The interval of market-clearing prices is [ p;, p,]. The experiment implements
three pricing rules in different sessions, denoted pir—1 .0, pr=o.s and pr—o in figure 1.
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Figure 1. Example price determination for three price rules.

In Bayesian Nash Equilibrium, each buyer optimally reduces her bid below value (and
each sellerincreases his ask above cost) to the point that (i) the marginal loss from the reduced
probability of transacting just matches (ii) the marginal gain conditional on transacting.
Satterthwaite and Williams (1989) observe that effect (ii) is absent in the call market for
sellers when k=1, because then p* is always set by a buyer or by a non-transacting
seller. Similarly for buyers when k = 0. Hence full revelation in these cases (a; = ¢; when
k=1 and b; =v; when k =0) is a dominant strategy, analogous to the dominant truth-
telling incentives in the one-sided second-price (Vickrey) auction. Rustichini et al. (1994)
show that in Bayesian Nash Equilibrium both buyers and sellers reduce their bids and
asks as k increases, as illustrated in figure 2. Cason and Friedman (1997) show that this
bid and ask ordering holds for more general trader beliefs than in the Bayesian Nash
Equilibrium. Although in theory the traders’ strategies are sensitive to the pricing rule,
Cason and Friedman (1997) find that laboratory subjects’ offers do not respond to the
differing incentives provided by the pricing rule & (see also Table 2 below). Our empirical
work therefore will pool the data from the three pricing rules.

2.2.  Experimental design

Asreported in Cason and Friedman (1997), the experiment consists of 17 separate laboratory
sessions conducted at UCSC, each with 30 or 40 trading periods. Subjects were recruited
from large lower division classes in economics and biology. No inexperienced subject had
ever participated in a previous call market session. Subjects were randomly assigned a
computer and trader position, and instructions were read orally while subjects followed
along on their own written copy. Four practice periods preceded the 30 or 40 trading
periods. Including instructions, sessions lasted a little less than two hours. Total earnings
ranged between $5 and $30 per subject with an average of about $18.

Each session employed 4 buyers and 4 sellers who enter offers in each period. Values
and costs were induced in the standard fashion: Each period ¢ each buyer i received a
specified “resale value” v;; for a single indivisible unit, and similarly each seller j received
a specified cost ¢j. If these traders transact at price p, then the exchange surplus v;; — cj is
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Figure 2. Approximate risk neutral BNE bid and ask functions for the three k treatments (4 buyers, 4 sellers).

composed of the buyer’s profit v, — p and the seller’s profit p —cj. These profits accumulated
in a computer account throughout the session, and were paid in cash after the last trading
period.

Atthe beginning of the session all traders were informed that all values and costs would be
drawn independently each period from the discrete (rounded to the nearest penny) uniform
distribution over the range [$0.00, $4.99]. Before the start of each trading period, each
buyer saw her own value for that period and each seller saw his own cost, but no trader saw
others’ realized values or costs. At the conclusion of the trading period all subjects received
a summary of every participant’s actions and outcomes, using tables that presented the
bids, asks, values, costs and profits of all traders. We provided this complete information to
increase traders’ opportunity to learn about their rivals’ strategies and to provide them with
sufficient information to calculate optimal offers ex post. The instructions in the Appendix
provide additional details of the procedures and the operation of the market program.

Because we are studying learning we differentiate the data based on trader experience.
Trader experience is a composite treatment with four levels, including the usual two levels
referred to below as Inexperienced (all 8 traders are inexperienced humans) and Experienced
(all 8 human traders who previously had participated in an inexperienced session). The other
two levels involve robot traders (i.¢., computer algorithms) programmed to use the Bayesian
Nash Equilibrium bid or ask functions graphed in figure 2; instructions include the relevant
graph. In the Nash Robots treatment each human is inexperienced in any call market and
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Tuble 1. Summary of laboratory sessions.

Experience treatment:

Session name k-Treatment Opponents Experience Label Number of periods
k0-hum-1 k=0 Humans None Inexperienced 30
k0-hum-2 k=0 Humans None Inexperienced 30
k0-hum-3x k=0 Humans vs. Humans Experienced 40
kO-rob-4 k=0 Nash Robots None Nash Robots 30
kO-hum-5rx k=0 Humans vs. Robots Nash Experienced 40
k5-hum-6 k=05 Humans None Inexperienced 30
k5-hum-7 k=05 Humans None Inexperienced 30
k5-hum-8x k=05 Humans vs. Humans Experienced 40
k5-rob-9 k=05 Nash Robots None Nash Robots 30
k5-hum-10rx k=05 Humans vs. Robots Nash Experienced 40
k1l-hum-11 k=1.0 Humans None Inexperienced 30
k1l-hum-12 k=1.0 Humans None Inexperienced 30
k1l-hum-13x k=1.0 Humans vs. Humans Experienced 40
kl-rob-14* k=1.0 Nash Robots None Nash Robots 30
kl-rob-15 k=1.0 Nash Robots None Nash Robots 30
kl-rob-16 k=1.0 Nash Robots None Nash Robots 30
k1-hum-17rx k=1.0 Humans vs. Robots Nash Experienced 40

All markets involved 4 buyers and 4 sellers each period, whose values and costs were drawn independently from
the uniform distribution over [0, $4.99].

#Session k1-rob-14 employed only five subjects, each competing against 7 robot opponents. All other sessions
employed 8 human subjects.

faces 7 such robots. The last treatment, which we shall refer to as Nash Experienced, brings
together (in a true market environment) 8 humans who had previously participated in Nash
Robots sessions.*

Table 1 summarizes the 17 sessions. The 11 inexperienced sessions had 30 periods and
the 6 experienced sessions had 40 periods. The eight traders switched trading roles twice
within a session, so that each could obtain experience facing the incentives of both sides
of the market. In the 30-period inexperienced sessions, roles were switched before period
9 and before period 25. In the 40-period experienced sessions, roles were switched before
period 11 and before period 31. The pricing rule &, the exact number of buyers and sellers,
their human or robot status, and the possibility of role switches all were announced publicly
each session before trade began.

3. Learning models

Traders in the call market have a formidable learning task. They implicitly must estimate
the bid and ask functions used by other traders and must seek a best response, a bid function
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b = B(v) for a buyer or an ask function a = A(c) for a seller. Arbitrary functions are quite
difficult to learn, but there are good reasons to restrict attention to more tractable families of
functions. First, it is straightforward to show that non-monotonic bid and ask functions are
always dominated by increasing functions in this setting. Furthermore, as shown in figure 2,
the equilibrium bid and ask functions are always approximately (and often precisely) lincar
in our environment with values v and cost ¢ uniformly distributed on the interval [0, M].
Indeed, Appendix A in Cason and Friedman (1997) shows that precisely linear functions
are the best response to a variety of other, nonequilibrium behavior by other traders. For
example, the bid function b = «v is the unique best response to truthtelling by other traders
(i.e.,t0 b = vand a = ¢) in a k-call market with m > 1 sellers and m — 1 other buyers,
where « = m/(m + k). Linear functions are also natural rules of thumb (e.g., mark up
cost by x %), and they are relatively tractable. For all these reasons—tractability, intuitive
appeal, and theoretical salience—we will henceforth assume that traders use linear bid and
ask functions.

The trader’s decision problem now can be posed as how much to reveal of her true
willingness to transact. For a buyer, write B(v) = «av, and by strict analogy write A(c) =
ac + (1 — a)M for sellers. Full revelation is represented by o = 1, and the usual partial
revelation by 0 < o < 1. Of course, complete unwillingness to transact (¢ = 0) and
overrevelation (¢ > 1) are logical possibilities but they are dominated by partial or full
revelation. The call market learning problem now comes down to finding how the revelation
parameter « responds to experience.

Psychologists’ error-driven learning approach (e.g., Rescorla and Wagner, 1972; Gluck
and Bower, 1988; McClelland and Rumelhart, 1988; Friedman et al., 1995) seems especially
relevant since it describes adjustment of a continuous choice variable given continuous
feedback. At the end of each trial (trading period) ¢, each trader has feedback on the
“correct” value e, i.e., each has the information required to see ex post what the most
profitable value of & would have been. The trader uses this ex post optimal «; to update
her belief regarding the correct revelation parameter &;:

a =1 —5([)]&1—1 +5([)0‘;0a D
where §(¢) is a function describing the learning rate. We make the decision rule transparent,
in that subjects adjust fully to the current belief &; when selecting the next period revelation
parameter:

i1 = G 0)

Combining Eqs. (1) and (2) and rearranging, we have the following error-driven learning
equation:

orp1 = oy + 8(t)ey, (€))

where the error ¢; = «f — «; is the difference between the ex post optimal ¢ and the o,
actually used.
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The additive form of Eq. (3) is traditional in the psychology literature, but there are two
reasons to consider an alternative multiplicative form. First, our revelation parameter o
is by definition a nonnegative ratio. Multiplicative adjustment automatically preserves the
nonnegativity constraint and generally seems better suited for working with a ratio. Second,
recent computer science studies of learning, e.g., Kivinen and Warmuth (1995), demonstrate
the objective superiority of a multiplicative form (“exponential gradient updating” in their
terminology) over the additive form (“ordinary gradient descent”) in complex environments.
To check for specification error, we include a residual time trend or drift parameter n and
obtain the multiplicative learning equation

[e7]*"

Oryl

w = lw] @
or, taking logs,
[In(at+1) — In(e)] = 1 + [In(e?) — In(e) [80). Q)
As a robustness check, we also estimate the additive form
i1 — el =1+ [of — o ]5(0). ©)

Equation (6) can be used to model adaptive learning of any continuous action «, market or
non-market, and (5) can be used whenever we can safely assume o > 0. We do not impose
the additional constraint that o does not exceed 1.

Several issues arise in applying (5) or (6) to our market data. First, based on previous
results we must allow for the possibility that some types of errors have greater impact
than others. The fundamental tradeoff in increasing « is between a higher probability of
transacting and lower profit conditional on transacting. Sometimes the ex post error is from
missing out on a profitable transaction opportunity (which we shall call error type m) and
sometimes it is from adversely affecting the price of a realized transaction (error type p).
Using a simple regression suggested by Selten and Buchta’s (1998) directional learning
theory, Cason and Friedman (1997) find that traders seem to respond much more strongly
to type m than type p errors. Therefore we want to estimate separate structural parameters
3 and 8, to assess the two types of ex post errors.

Second, we want to account for recency effects. Some popular learning models, e.g.,
back propagation as in McClelland and Rumelhart (1988) or the Cournot learning model
mentioned below, assume that errors late in a session have the same impact on « as errors
early in a session. It would be dangerous to impose such an assumption in our error-driven
learning model since errors of a particular sort may be infrequent. Psychologists’ traditional
power law of practice assumes that the impact diminishes with experience as measured by
the number N of relevant previous trials. Indeed, models such as the fictitious play model
mentioned below or simple Bayesian updating assume that the impact is proportional to
N~ We include a parameter g to detect recency effects.
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Thus our specification of the learning rate is
3(t) = 8m DN + 8, DNy @

where D,,; and D, are indicator variables equal to 1 for error type m and p, respectively;
and N, and N, are, respectively, the number of times an error of type m and p has been
made by the subject, including the current period. The estimated » term in Eqgs. (5) and (6)
captures the fixed trend in the «, independent of the error feedback; it will be zero if the
model is correctly specified.

In an early version of this paper (Cason and Friedman, 1995), we considered several
additional complications: (a) weighting more recent evidence more strongly in the &,
update; (b) permitting previous value or cost draws nearer the current value or cost draw
to have more impact on the &, update; and (¢) updating & more strongly for errors with
higher expected payoff consequences. The current specification drops (b) but captures (a)
via the B parameter and captures (¢) via weighted least squares estimation, as noted in the
next section. The current specification has about the same explanatory power as the earlier
version but is much more parsimonious.

The estimated parameters d,,, 3, and B have a natural interpretation in terms of classic
models of expectation formation; see Cheung and Friedman (1997) for a parallel interpre-
tation in the context of learning in games. According to the Cournot model of expectation
formation, « adjusts completely to the previous period’s ex post optimum: ¢, = «. This
implies the restrictions é,, = 3, = 1 and 8 = 0. The fictitious play model of expectation
formation sets a1 equal to the average ex post optimum « of all previous periods. This
implies the restrictions 8,, = 8, = 1 and g = 1. Fictitious play implicitly assumes that
other players keep their behavior constant, which is precisely correct in the Robot Oppo-
nents treatment, and may be a reasonable approximation in other treatments. In general,
the B coefficient can be thought of as memory length, and O < 8 < 1 indicates a stronger
adaptive response to more recent observations. Recall that the parameters 8,, and 3, are
intended to capture possibly asymmetric error impacts, and that the Cason and Friedman
(1997) finding of stronger response to missed transactions suggests that &, > J,.

A final implementation issues arises from the definition of the ex post optimum. Recall
that the price is a k-weighted combination of the fourth and fifth highest offers. A buyer
optimizes ex post by bidding one penny above s4, the fourth highest offer of the other 7
traders, whenever that bid would not exceed her current value. Tying s4 keeps the price as
low as possible and the penny breaks ties so the bidder is sure to transact. Similarly, the
ex post optimal ask is one penny below s4, when s, is above the seller’s cost. Ignoring the
penny, we conclude that a current period ex post optimum revelation ratio is &y = $4/v; for
buyers and o = (M —s4)/(M — ¢;) for sellers, whenever the trader could have done better.

Of course, sometimes the trader could not have done better that period given the actions
of the other 7 traders. The ex post optimum is not to transact when a buyer’s value is too low
or a seller’s cost is too high to transact profitably. Also, many buyers and sellers transact at
prices that they could not have profitably altered. In such cases there is no ex post error and,
consistent with Eq. (3), we exclude these cases when estimating the model.’> Note also that
in the dominant full revelation strategy cases of buyers with k£ = 0 and sellers with k& = 1,
the ex post optimum is not uniquely defined by the o expressions given above. In these

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



86 CASON AND FRIEDMAN

cases we use the midpoint of the range of optima, i.e., we set ) midway between s4/v; and
1.0 for buyers, and midway between (M — s4) /(M — ¢;) and 1.0 for sellers.

4. Results

To avoid unnecessary overlap with Cason and Friedman (1997), we present only a brief
overview of the raw bid and ask data in the first subsection, together with a summary of the
revelation ratios. The next two subsections present the main results from fitting the learning
model, and the last subsection uses a simulation to check whether the learning model can
explain the overall change observed in the aggregate revelation ratios.

4.1. Overview

Figure 3 illustrates the nature of the bid and ask data by showing a scatterplot for session
kS-hum-8x, a fairly typical session with Experienced traders. The solid line in each panel
represents the full revelation benchmark Bid = Value or Ask = Cost, and the dotted line
indicates the (approximate) risk neutral Bayesian Nash Equilibrium bid or ask function.
The open circles represent the 320 actual bids and asks by 8 traders over 40 periods. In
figure 3 (and in all other sessions) there is a strong positive correlation between values
and bids (and between costs and asks), and few traders overreveal by bidding above value
or asking below cost. Nevertheless, there exists substantial variation in the bids and asks
relative to the simple equilibrium bid and ask functions.

The learning analysis focuses on the revelation ratio «, so before proceeding it is in-
structive to summarize how this ratio varies across datasets and over time. Table 2 presents
the median separately for the k-treatments, for buyers and sellers, and for each experience
condition. The top row shows « in risk neutral Bayesian Nash Equilibrium. Consistent

Tuble 2. Median revelation («) by experience, k-treatment and trader role.

Buyers Sellers
Experience condition: k=0 k=05 k=10 k=0 k=05 k=10
Risk Neutral 1.0 0.908 0.8 0.8 0.908 1.0
Bayesian Nash
Equilibrium
Inexperienced 0.872 0.929 0.934 0.907 0.903 0.952
[0.238] [0.172] [0.186] [0.251] [0.257] [0.217]
Experienced 0.928 0.947 0.955 0.932 0.964 0.959
[0.152] [0.152] [0.137] [0.197] [0.135] [0.253]
Nash Robots 0.951 0.930 0.876 0.915 0.935 0.947
[0.118] [0.177] [0.230] [0.242] [0.230] [0.239]
Nash Experienced 0.993 0.996 0.973 0.993 0.997 0.991
[0.054] [0.033] [0.085] [0.023] [0.019] [0.065]

Inter-quartile range shown in brackets to represent dispersion.
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Figure 3. (a)Bidsin session k5-hum-8x (k = 0.5, experienced subjects); (b) Asks in session k5-hum-8x (k=0.5,
experienced subjects).

with a major finding of Cason and Friedman (1997), the table shows that traders’ median
o generally does not track the equilibrium prediction as the pricing rule k£ changes. The
median « shifts in the predicted direction only in the Nash Robots experience condition,
and in all conditions the shifts in & are roughly an order of magnitude smaller than pre-
dicted.

Table 2 also highlights the Cason and Friedman (1997) finding that revelation increases
significantly with experience; the entries in the experienced rows consistently exceed the
corresponding entries in the other two rows. This experience effect can be seen more
clearly in figure 4. Combining revelation ratios « across buyers and sellers and across
k values, we plot the empirical cumulative distribution of « in periods 1 and 2 of the
inexperienced treatments and the empirical cumulative distribution of « in the last two
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Figure 4. Beginning and ending « distributions.

periods of the experienced treatments. A primary task for the learning model analyzed in
the next subsection is to explain the dramatic shift of the distribution towards « = 1.0, or
full revelation.

4.2. Model estimates

The adaptive, error-driven learning model presented in Section 3 is summarized by substi-
tuting Eq. (7) into Eq. (5):

[In(etrs1) — (@)1 = 7+ [In(0) — (@) ]{d DNl + 8, DNy ). ®)

Equation (8) is estimated using weighted nonlinear least squares.® States with no error
constitute 3966 of the total 4470 offer observations and are omitted from the sample.
Because these error observations are excluded and because there is no constant term in the
expression in braces {}, the 8,, and 8, estimates capture directly the impact of missing a
trade because of excessive underrevelation (D, = 1) and the impact of adversely affecting
price (D,; = 1). In both cases, recall that positive estimates indicate adjustment towards
the ex post optimal «, an increase in « in event m and a decrease in « in event p. Estimates
dn = 1ord, = 1indicate immediate adjustment to the ex post optimum, and estimates
between 0 and 1 indicate partial adjustment. A positive n indicates a positive trend in the
revelation parameter « independent of the feedback.

Table 3 presents the coefficient estimates for buyers (Panel A), sellers (Panel B) and
pooled (Panel C).” In some Inexperienced datasets the 1 estimates are significantly positive
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Tuble 3. Multiplicative specification, nonlinear weighted least squares estimates.

Miss trade Price impact Ho: 8, = 6,
Experience n Sm 5p B Adj. R? obs. obs. [x% (1d.£)]

Funel A: buyers

Inexperienced 0.01 061 -0.18 0.01 0.07 27 48 3.02
(0.06) (0.40) (0.26) (0.62) (p =0.08)
Inexperienced® 005 0554 —0.19 0.11 0.10 27 46 5.05
0.04) (028) (0.20) (0.51) (p < 0.025)
Experienced 002 335 0.39¢ 817 028 12 38 13.04
0.02) (0.90) (0.21)  (135.56) (p < 0.01)
Robot opponents ~ —0.02  0.80° —0.54 —0.63> 051 32 34 11.26
(0.06) (0.19)  (0.36) (0.23) (p < 0.01)
Robot experienced —0.09 023  —0.002 —2.60 0.05 10 33 1.07
(0.08) (0.82) (0.014) (3.56) (p = 0.30)
Funel B: sellers
Inexperienced 0.10° 078"  0.22 021 028 50 58 3.15
0.04) (0.16)  (0.24) 0.29) (p =0.08)
Experienced —0.07 124> —0.38° -0.01 029 22 45 18.05
0.04) (026) (0.16) (0.23) (p < 0.01)
Robot opponents 0.10> 035> —0.304 —1.13¢ 042 19 24 12.83
0.03) (0.13) (0.16) (0.48) (p < 0.01)
Robot experienced —0.01  1.06° —0.02 0.18 0.90 10 41 68.24
(0.02) (0.05) (0.06) (0.15) (p < 0.01)
Funel C: pooled across buyers and sellers
Inexperienced® 0.07° 075 —0.03 0.19 0.21 77 104 11.19
0.03) (0.14) (0.15) (0.25) (p < 0.01)
Experienced —003 120" —024° —0.01 024 34 83 25.24
0.03) (0.23) (0.12) 0.22) (p < 0.01)
Robot opponents 001 071> —0.46° —0.72> 049 41 58 19.18
0.04) (0.14) (0.23) (0.19) (p < 0.01)
Robot experienced —0.06 1.09° —0.13 0.00 0.29 20 94 16.15
(0.05) (0.19) (0.16) (0.45) (p < 0.01)

[In(et;41) — In(e)] = 5+ [In(ee?) — (et ) {8 Do N,m’g +38, DP,N};'S}; standard errors are in parentheses.
Each observation is weighted by the expected payoff costs of an offer deviation from the optimal offer, as explained
in text.

2Two outlier observations excluded, as explained in note 6.

bDenote significantly different from zero at 1% (all 2-tailed tests).

“Denote significantly different from zero at 5% (all 2-tailed tests).

dDenote significantly different from zero at 10% (all 2-tailed tests).

but elsewhere they are insignificant.® In every dataset the estimates indicate 8,, > 8,, and
in most datasets the x2 test reported in th rightmost column indicates that the difference is
highly significant. Moreover, the 8, estimates are either insignificant or negative, indicating
adjustment away from the ex post optimum (and toward greater revelation). The pooled
3, estimates center near the full adjustment towards the ex post optimum (again towards
greater revelation).
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Tuble 4. Additive specification, nonlinear weighted least squares estimates.

Miss trade Price impact Hop: 48, =8,
Experience n S Sp B Adj. R? obs. obs. [x% (1d.0]

Punel A: buyers

Inexperienced 044> —1279  5355° 088> 0.8 27 48 30.19
0.07) (074  (042) (0.11) (p < 0.01)
Inexperienced® 0.06 037 —-0.06 -0.13 0.04 27 46 1.10
(0.04) (040) (023)  (0.99) (p =029)
Experienced 0.02 261 012 122 013 12 38 3.93
0.03) (1.17) (028  (1.28) (p =0.05)
Robot opponents ~ —0.01 0.79® —0.63¢ —0.80° 0.28 32 34 9.78
0.04) (021) (037)  (0.28) (p <0.01)
Robot experienced —0.03 0.44 0.001 -1.74 0.18 10 33 7.14
(0.03) (0.86) (0.014) (1.95) (p <0.01)
Puanel B: sellers
Inexperienced 012> 0524 041 012 0.11 50 59 0.07
0.04) (028 (032)  (0.53) (p =0.79)
Experienced 0.04 0.61 037 —042 013 22 46 0.19
007) (048 (0.32)  (0.60) (p =0.67)
Robot opponents 0.09® 021 —026 —166% 024 20 24 6.71
0.03) (0149 (024)  (0.87) (p <0.01)
Robot experienced 0.01 1.03° 0.03 0.21 0.79 10 41 35.80
0.02) (0.10) (0.07)  (0.19) (p <0.01)
Puanel C: pooled ucross buyers and sellers
Inexperienced® 0.09° 0.50° 0.17 —0.07 0.07 77 105 1.20
0.03) (024 (0.19)  (0.50) (p=027)
Experienced 0.04 0759 024 —027 010 34 84 1.36
0.04) (040) (0200  (047) (p =024
Robot opponents 0.02 0.65> —0.53° —0.86° 025 52 58 15.26
0.03) (0.16) (026)  (0.26) (p <0.01)
Robot experienced —0.01 1.02° 0.00 -0.04 0.43 20 74 25.69
0.02) (0.17) (0.09)  (0.32) (p <0.01)

[op41 — ] =0+ [ef — o o D,,,,N,;,ﬁ +8,Dpy N};’B]; standard errors in parentheses.

Each observation is weighted by the expected payoff costs of an offer deviation from the optimal offer, as explained
in text.

2Two outlier observations excluded, as explained in note 6.

bDenote significantly different from zero at 1% (all 2-tailed tests).

“Denote significantly different from zero at 5% (all 2-tailed tests).

dDenote significantly different from zero at 10% (all 2-tailed tests).

We also estimated Eq. (8) separately for each of the 17 sessions to provide an alternative
formal test of the hypothesis that 3,, > 3, against the null 8,, = §,. Of the resulting 17
statistically independent estimates of the pair (,,, 8,), the ordering in 16 pairsis 8,, > 8,. A
binomial test strongly rejects (p < 0.001) the null hypothesis that the orderings are equally
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likely in favor of the alternative hypothesis that traders respond more strongly to m-errors
than to p-errors.

The results shown in Table 3 also indicate that in most cases we cannot reject the Cournot
(short memory) hypothesis 8 = 0. A puzzling exception is the negative estimate for the
Robot Opponents data. Our prior belief, noted above, is that larger 8 (indeed 8 = 1) is
more plausible in this environment.

Table 4 presents corresponding results for the alternative additive (rather than multiplica-
tive) specification

[arr1 — o] = 1+ [ — {8 DpiNpl + 8, DNy ) ©)

obtained by inserting Eq. (7) into Eq. (6). Table 4 includes one more data point in each
of three datasets (in each case, a negative « arising from an ask above M = 4.99). The
results are mostly similar to those of Table 3 but a bit more erratic; for example, the additive
specification of Table 4 is more sensitive to the outlier observations included in the top row
of estimates.”

In both Tables 3 and 4 we pool across individual traders. It is conceivable that the
conclusions regarding the difference in the adjustment parameters 8, and 8, are caused by
a subset of traders who react more strongly to missing a profitable trade, while other traders
do not. Based in part on previous work (e.g., Cheung and Friedman, 1997; Friedman
et al.; 1995; Friedman and Massaro, 1996), we had planned to estimate this learning
model for individuals to test this conjecture and evaluate learning heterogeneity. However,
each subject in each (buyer or seller) role makes only a few offers—roughly 15 when
inexperienced and 20 when experienced—and errors are infrequent—only 14 of the 170
inexperienced subjects made at least 5 errors, and only 12 of the 96 experienced subjects
made at least 5 errors. Hence reliable estimates for individual subjects are not feasible with
our data.

4.3. Observational learning

Garvin and Kagel (1994) define a discount rate for bidding in common-value auctions that is
in some ways analogous to our revelation ratio . Their data analysis indicates that subjects
adjust the discount rate in the appropriate direction when they personally lose money by
overpaying for the auctioned good. Perhaps more surprisingly, subjects adjust almost as
much when they see that they would have lost money had they applied their own discount
rate to the auction winner’s signal.

Our experiment also provides subjects with the opportunity to learn from observing the
experience of other subjects. The complete ex post information allows each seller to see
what the ex post optimum revelation ratio was for the other three sellers as well as her
own ex post optimum, and similarly for buyers.'? Perhaps traders will adjust o towards the
ex post optimum «;° observed for another trader of her own type as well as towards her
own personal ex post optimum. This possibility is also reminiscent of the Camerer and Ho
(1999) parameter for discounting payoffs that can be inferred but that are not personally
experienced.
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Given the empirical results of the previous subsection, our specification of observational
learning should allow for separate coefficients for other traders m-errors and p-errors, but
can be streamlined by dropping the time trend and recency parameters. Therefore we
estimate the equation

[111(0[,+1) - ln(“r)] = [IH(O[;)) - ln(at)]{am Dmr + ap Dpt}
+ [in(eg) = ey D5y + 7,03, (10)

The number of observations here is four times as large as in the previous models because each
error also leads to three “observational” errors that can be used by the other three subjects
in the same (buyer or seller) role. We also estimate an additive specification analogous to
Eq. (9). Our expectation was that the estimated observational learning coefficient would
be smaller (perhaps much smaller) than the direct learning coefficient for missed trades,
0 < ¥m < &u, and that the observational learning coefficient y, for pricing errors would
not be significant.

Table 5 reports our findings. The estimates are as expected for the robot experienced
treatment. The estimates for the other three treatments are much better than we expected:
Both observational learning coefficients are large and significant in all but the robot experi-
enced treatment. The estimated missed trades coefficients are ordered y,, < 8, as expected,
but particularly in the inexperienced data (both human and robot opponents) they are similar
in size. Consistent with the direct learning results, we also find a stronger impact for obser-
vational m-errors than for observational p-errors (v > y;), but unlike their direct learning
counterparts, the observational p-errors have a significant positive effect. These results are
robust to inclusion of a trend parameter 7.

4.4. Model simulation

The model estimates in Tables 3 and 4 clearly point towards larger alphas and greater
revelation in later periods. The positive §,, estimates indicate that the typical subject
increases revelation after missing out on a profitable trade. The negative (or roughly zero)
estimates of 4, also indicate an increase (or no change) in revelation following an adverse
impact on price because the movement is away from the ex post optimum of less revelation.
But are the effects quantitatively of the right magnitude to account for traders’ observed
tendency towards full revelation?

To answer that question, we simulate subject behavior according to the learning model
using parameter values fitted to (approximately) two-thirds of the sessions, randomly cho-
sen. We then compare the final period simulation results to the actual final period results
of the other (out-of-sample) one-third of the sessions. Following a standard convention,
¢.g., Roth and Erev (1995), the simulation begins with random draws from the empirical
initial ¢ distribution, viz., the Inexperienced (Start) cumulative distribution function shown
in figure 4. The simulated subjects participated in 15 call auction periods and used the
Inexperienced (or Robot Opponent) estimates to update «, and then participated in 20 call
auction periods and used the Experienced (or Robot Experienced) estimates to update .'!
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Tuble 5. Observational learning.

Experience Sm 3p Vi Yp Adj. R

Funel A: multiplicative specification, weighted least squares estimates (Pooled across buyers and sellers)

[n(etr11) — In(e)] = [1n (o) — n(tr) [{8 Done + 8, Do} + [ n (2%) — In(ee) | {30 DG, + v DG, )

Inexperienced® 0.82° —0.22 0.75P 0.17° 0.29
(0.11) (0.13) (0.05) (0.03)

Experienced 1.09° —0.16 0.53P 0.12° 0.21
0.17) (0.08) (0.07) (0.03)

Robot opponents 1.10° —0.52¢ 0.94° 0.40° 0.42
(0.09) (0.24) (0.08) (0.05)

Robot experienced 1.00° 0.01 0.08 0.05 0.18
(0.11) (0.08) (0.12) (0.04)

Funel B: udditive specification, weighted leust squares estimates (Pooled ucross buyers and sellers)

[etr41 — o] = [O‘to - O‘t]{‘stmt + 5prt} + [05500 - at] {VmD::,[ + A‘VPD;;}

Inexperienced? 0.83P —-0.18 0.79° 0.31° 0.40
0.21) (0.20) (0.06) (0.02)

Experienced 1.07° 0.14 0.76° 0.13° 0.29
0.22) (0.11) (0.06) (0.03)

Robot opponents 0.94° —0.74° 0.81° 0.41° 0.35
(0.11) (0.25) (0.10) (0.04)

Robot experienced 1.01° 0.03 0.05 0.04 0.17
(0.11) (0.05) (0.08) (0.03)

Each observation is weighted by the expected payoff costs of an offer deviation from the optimal offer, as explained
in text.

Standard errors in parentheses.

#Two outlier observations excluded, as explained in note 6.

bDenote significantly different from zero at 1% (all 2-tailed tests).

“Denote significantly different from zero at 5% (all 2-tailed tests).

Figure 5 presents the results based on 400 simulated subjects for both the multiplicative
specification of Table 3 and the additive specification of Table 4. For comparison purposes,
figure 5 also presents the out-of-sample inexperienced starting o distribution and the out-of-
sample experienced ending distribution. The mean value of the out-of-sample experienced
distribution is 0.943, with a 95% confidence interval of [0.903, 0.983]. The mean of both
simulations fall within this confidence interval, with the additive model simulation mean
= 0.945 almost dead center and multiplicative model simulation mean = 0.907 near the
lower endpoint. Both simulations, however, exhibit too little dispersion compared to the
actual distribution. This is to be expected because we fit a representative agent, and allowed
only a very limited sort of heterogeneity in the simulation. We expect that simulations based
on heterogeneous agents would improve the fit, but as discussed above individual subject
estimates are not feasible in the current data. In particular, neither simulation captures the
large number of fully revealing (i.e., @ = 1) final offers.
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Figure 5. Simulated and actual « distributions for ending periods.

Simulations based on the observational learning model of Section 4.3 lead to similar
conclusions, including a lower simulated distribution for the multiplicative version than
for the additive version. The observational learning model simulations produce somewhat
lower distributions than their direct learning counterparts, mainly because of the positive
vp coefficients. In the direct model, as e rises there is little countervailing force to reduce
it because 3, is very low (and is indeed often negative, further increasing o). By contrast,
in the observational learning model the positive y, estimates oppose the rise in .

5. Discussion

By now there are numerous empirical learning models for studying individual behavior in
laboratory games and individual choice tasks, but (with a few partial exceptions noted in
the introduction) such models hardly exist for market behavior. In this paper we offer a
parsimonious yet fully specified learning model intended to track buyer and seller behavior
in a simple laboratory market institution known as the call market. The model is based on
the idea that traders respond to ex post errors by adjusting the degree to which their bids or
asks reveal true value or cost.

The model enjoys some empirical success. It accounts for a substantial portion of the
variation in trader behavior, typically 20-50% but up to 90% in the case of Robot Expe-
rienced Sellers. More importantly, it accounts well for traders’ response to ex post errors.
Parameter estimates indicate that traders systematically react more strongly to ex post “un-
derrevelation” that causes them to miss out on a profitable trade (/n-errors) than to ex post
“overrevelation” that causes them to have an adverse impact on the market price (p-errors).
The parameter estimates indicate a strong recency effect in that accumulated experience
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does not significantly dampen traders’ reaction to the ex post errors. The estimates also
indicate substantial “observational learning” from other traders’ ex post errors, again with
a greater response to m-errors than to p-errors.

Trader behavior changes over time in the call market institution. Experienced traders
in later periods reveal true values and costs to a much greater extent than inexperienced
traders do in early periods (or than do ideal risk neutral traders do in Bayesian Nash
equilibrium). Two different kinds of evidence show that our learning model accounts
well for this behavioral change. The parameter estimates indicate little or no scope for an
autonomous time trend in revelation, given coefficients that pick up systematic reaction
to ex post errors. Perhaps more importantly, simulation of the estimated model roughly
reproduces the mean shift in revelation.

The estimation results include two puzzles. Although previous analysis of the data led
us to expect a weaker reaction to the ex post error of adversely affecting price (p-errors)
than to missing profitable transactions (m-errors), we did not expect to see negligible direct
reactions to p-errors or reactions in the wrong direction. A possible (but ex post) expla-
nation is that some traders react to adversely affecting price by thinking that if they had
underrevealed to a much greater extent they would have missed out on the transaction.'?
The other puzzle is that the estimated recency effect is strongest in the treatment with pre-
programmed robot opponents where a priori we expected it to be the weakest. Other than
to mention that the subjects in this treatment were inexperienced, we have no explanation
to offer. We believe that the puzzle should be taken seriously only if it is confirmed with
new data and with new model specifications.

Important work lies ahead. Potentially, the most important application of the current
line of research is to predict the performance of many different market institutions in a
variety of environments. Learning models should be tested in random values environments
with the continuous double auction, multiple call market and uniform price double auction
institutions. The present study provides design lessons for such experiments. Perhaps the
most important negative lesson is that more data are required to estimate heterogeneous
models of individual learning, so subjects should remain in the same (buyer or seller) role
in longer sessions.'? It also may be worthwhile investigating asymmetric distributions for
values and costs to produce greater variability in the equilibrium predictions. Although
a random values environment is appropriate for studying call market applications such as
opening price procedures, other sorts of environments will be appropriate when studying
other trading institutions. For example, a stationary values environment or an environment
with values that follow a random walk might be appropriate for studying non-auction trading
institutions that feature long-term attachments between buyers and sellers. We leave these
avenues for future research.
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Clower at the University of Trento, the 1997 Bonn conference on bounded rationality, and
at Middlebury College. Editor Charles Holt and anonymous referees offered several use-
ful suggestions, most notably that we consider observational learning. The usual caveat
applies.

Notes

1. We are thinking of Smith-type auctions of complex bundles like airport landing rights. We know of no
efficiency proof for these auction mechanisms (indeed, there may be proofs of inefficiency) yet they are quite
efficient in practice.

2. McCabe et al. (1992) is a notable exception from the stationary repetitive environment usually employed in
market experiments. They add arandom constant each period to all values and costs, which causes equilibrium
prices to fluctuate randomly but keeps the equilibrium quantity constant.

3. An exception is Camerer and Ho’s (1999) analysis of p-beauty contest games, where they discretize the
continuous set of choices into intervals to estimate their Experience Weighted Attraction (EWA) model. A
similar procedure could be applied to the continuous action space of these call markets, but the EWA model
would require additional adjustments to capture the learning asymmetry that we find in the data. Another
exception is Capra et al. (1999), who apply a learning model to a continuous-choice duopoly market. Unlike
our approach, Capra et al. model learning and beliefs in terms of the probability distribution of others’ price
choices, and they apply a logit probabilistic choice model to generate choice probabilities.

4. Each inexperienced session employed a common set of random value and cost draws, and each experienced

session employed another common set of random value and cost draws.

Including the cases with no error does not change the conclusions; cf. note 7.

6. As documented in Cason and Friedman (1997), the offers exhibit heteroscedasticity: Error variance is higher
when the expected cost of errors is smaller; i.e., for low and high value draws and low and high cost draws
(cf. Smith and Walker, 1993). We assume that the variance is proportional to the reciprocal of the expected
cost of an offer error and weight observations by the expected error cost, as calculated in Cason and Friedman
(1997).

7. We also present estimates with two outliers excluded in the inexperienced buyers estimate and pooled buyers
estimate. In one case a bid of 2.40 was submitted when the value draw was 0.21 (¢ = 11.5), and in the other
case a bid of 2.35 was submitted when the value draw was 0.37 (¢ = 6.4). These outliers have a much greater
impact on the additive specification of Table 4.

8. Wealsoreestimated the model shown in Table 3 after including the observations with no ex post error. Because
Dy = Dp; = 0 in these cases, for these observations the term in brackets in Eq. (8) is zero. The parameter
estimates change very little and our conclusions are robust to including these no error observations, although
the n estimates are frequently significantly different from zero due in part to the substantially increased sample
size.

9. Standard goodness-of-fit comparisons of the two specifications (such as Adjusted R-squared or likelihood
function comparisons) are inappropriate due to the different dependent variables of the multiplicative and
additive specifications.

10. Conceivably a buyer might learn to adjust her revelation ratio from observing sellers’ ex post errors and a
seller might learn from observing buyers’ errors. We a priori chose not to considers such cross-observational
learning because (except for £ = 0.5) the optimal revelation ratios of buyers differ from those of sellers. Of
course, our learning model’s definition of ex post error already incorporates learning from the other side of
the market in the narrower sense of observing their actual behavior, but not trying to calculate their optimal
behavior.

11. Recall that although each inexperienced (experienced) session had 30 (40) periods, subjects participated in
each of the buyer and seller roles half of the time. Also, one half of the simulated subjects followed the
Inexperienced-Experienced experience pattern, and one half of the simulated subjects followed the Robot
Opponent-Robot Experienced experience pattern.

W
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12. A referee suggests more generally that subjects regard positive trading profits as positive reinforcement that
does not demand a change in behavior, while they regard missing a valuable trade and earning zero profit as
negative reinforcement that does demand a change. This interpretation is consistent with our own intuition
and can be linked to the psychology literature.

13. Indeed, a referee notes that players in the £ =1 and £ =0 sessions may have to unlearn as buyers the « they
learn as sellers, and vice versa.

References

Bush, R. and Mosteller, E. (1955). Stochastic Models of Learning. New York: John Wiley and Sons.

Camerer, C. (1999). Behavioral Game Theory. Book Manuscript, California Institute of Technology.

Camerer, C. and Ho, T.-H. (1999). “Experience-Weighted Attraction Learning in Normal-Form Games.” Econo-
metrica. 67, forthcoming.

Capra, C.M., Goeree, J., Gomez, R., and Holt, C. (1999). “Learning and Noisy Equilibrium Behavior in an
Experimental Study of Imperfect Price Competition.” Manuscript, University of Virginia.

Cason, T. (1993). “Call Market Efficiency with Simple Adaptive Learning.” Economics Letters. 40, 27-32.

Cason, T. and Friedman, D. (1995). “Learning in Laboratory Markets with Random Supply and Demand.”
Manuscript, University of Southern California.

Cason, T. and Friedman, D. (1997). “Price Formation in Single Call Markets.” Econometrica. 65, 311-345.

Cheung, Y.-W. and Friedman, D. (1997). “Individual Learning in Games: Some Laboratory Results.” Games and
Economic Behavior. 19, 46-76.

Daniel, T., Seale, D., and Rapoport, A. (1998). “Strategic Play and Adaptive Learning in the Sealed Bid Bargaining
Mechanism.” Journal of Mathematical Psychology. 42, 133-166.

Friedman, D. and Ostroy, J. (1995). “Competitivity in Auction Markets: An Experimental and Theoretical Inves-
tigation.” Economic Journal. 105, 22-53.

Friedman, D., Massaro, D., Kitsis, S., and Cohen, M. (1995). “A Comparison of Learning Models.” Journal of
Mathematical Psychology. 39, 164-178.

Friedman, D. and Massaro, D. (1996). “Probability Matching and Underconfidence: An Exploration of the
Decision Process.”” Manuscript, University of California at Santa Cruz.

Fudenberg, D. and Levine, D. (1998). Theory of Learning in Games. Cambridge, MA: MIT Press.

Garvin, S. and Kagel, J. (1994). “Learning in Common Value Auctions: Some Initial Observations.” Journal of
Economic Behavior and Organization. 25, 351-372.

Gode, D. and Sunder, S. (1993). “Allocative Efficiency of Markets with Zero Intelligence (ZI) Traders: Market as
a Partial Substitute for Individual Rationality.” Journal of Political Economy. 101, 119-137.

Gluck, M. and Bower, G. (1988). “From Conditioning to Category Learning: An Adaptive Network Model.”
Journal of Experimentul Psychology: General. 117, 225-244.

Kagel, J. (1994). “Double Auction Markets with Stochastic Supply and Demand Schedules: Clearing House and
Continuous Double Auction Trading Mechanisms.” Manuscript, University of Pittsburgh.

Kivinen, J. and Warmuth, M. (1995). “Additive versus Exponentiated Gradient Updates for Linear Prediction.”
Proceedings of the 27th Annual ACM Symposium on Theory of Computing. New York: ACM Press, pp. 209—
218.

McCabe, K., Rassenti, S., and Smith, V. (1992). “Designing Call Auction Institutions: Is Double Dutch the Best?”
Economic Journal. 102, 9-23.

McClelland, J. and Rumelhart, D. (1988). Explorations in Parallel Distributed Processing: A Handbook of Models,
Programs and Exercises. Cambridge, MA: MIT Press.

Rescorla, R. and Wagner, A. (1972). “A Theory of Pavlovian Conditioning: Variants in the Effectiveness of
Reinforcement and Nonreinforcement.” In A. Baleck and W. Prokasy (eds.), Clussical Conditioning II: Current
Theory and Research. New York: Appleton-Century Crafts, pp. 64-99.

Roth, A. and Erev, 1. (1995). “Learning in Extensive Form Games: Experimental Data and Simple Dynamic
Models in the Intermediate Term.” Games and Economic Behavior. 8, 164-212.

Rustichini, A., Satterthwaite, M., and Williams, S. (1994). “Convergence to Efficiency in a Simple Market with
Incomplete Information.”” Econometrica. 62, 1041-1063.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



98 CASON AND FRIEDMAN

Satterthwaite, M. and Williams, S. (1989). “The Rate of Convergence to Efficiency in the Buyer’s Bid Double
Auction as the Market Becomes Large.” Review of Economic Studies. 56, 4717-498.

Satterthwaite, M. and Williams, S. (1993). “The Bayesian Theory of the k-Double Auction.” In D. Friedman
and J. Rust (eds.), The Double Auction Muarket: Institutions, Theories and Evidence. Redwood City, CA:
Addison-Wesley, pp. 99-123.

Selten, R. and Buchta, J. (1998). “Experimental Sealed Bid First Price Auctions with Directly Observed Bid
Functions.” In D. Budescu, 1. Erev, and R. Zwick (eds.), Games and Human Behavior: Essays in Honor of
Ammnon Rapoport. Mahwak, NI: Erlaaum Ass.

Smith, V. and Walker, J. (1993). “Rewards, Experience and Decision Costs in First-Price Auction.” Economic
Inquiry, 31, 237-244.

er. Further reproduction prohibited without permissionyzw\w.manaraa.com




